

Redox Topic Test

Time allowed: 45 minutes No reading time

Name:	ANSWERS
Marks: _	/43

Teacher: (circle your teacher)

CEM

DGM

JPT

NMO

1. Which one of the following is not an oxidation-reduction reaction?

$$\vee$$
 A. Mg(s) + 2 H⁺(aq) → Mq²⁺(aq) + H₂(q)

B.
$$2 \text{ Ag}^+(\text{ag}) + \text{Zn}(\text{s}) \rightarrow 2 \text{ Ag}(\text{s}) + \text{Zn}^{2+}(\text{ag})$$

(C.)
$$Ag^{+}(aq) + I^{-}(aq) \rightarrow AgI(s)$$

$$D. \qquad C\ell_2(g) + 2 \Gamma(aq) \rightarrow 2 C\ell^-(aq) + I_2(s)$$

2. Consider the following unbalanced equation.

Which one of the following statements is true?

F B. IO_3^- is not the oxidising agent. I reduced

F C. The oxidising agent is l_2 .

T D. l'is the reducing agent. エニ 🖘 ついいにん

+3+5+8

3. When arsenious acid, H₃AsO₃, is oxidized to arsenic acid, H₃AsO₄, the number of moles of electrons released per mole of arsenious acid is:

- A. 1
- B. 2
 - C. 3
 - D. 4

4. An electrochemical cell based on the following reaction has an $E^{O} = 1.50V$.

$$2MnO_2 + Zn + 2H^+ \Leftrightarrow Mn_2O_3 + H_2O + Zn^{2+} \approx 2^{2+} = 0.7\%$$

15 - 0.76

What is the standard reduction potential for the reduction of MnO_2 to Mn_2O_3 ?

5. Which of the following are redox reactions?

× 1.
$$O^{2-} + H_2O \rightarrow 2OH^{-}$$

✓ II. $-1 + H_2O^{-2} \rightarrow -1OH^{-1} + H_2$
✓ III. $+1 + 2H_2O_2 - 1 \rightarrow +12H_2O^{-2} + O_2$
✓ IV. $2H_2 + O_2 \rightarrow 2H_2O$

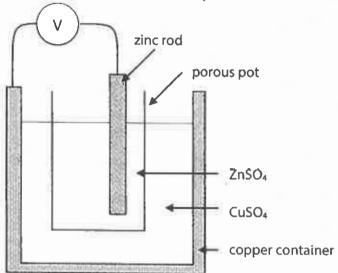
- A. II and IV
- B. III and IV
- (C.) II, III and IV
- D. all of them
- 6. In which of the following is vanadium exhibiting the highest oxidation number?
 - A. VO²⁺
 - B. NH₄VO₃
 - C. V₂(SO₄)₃
 - D. VBr₄
- 7. A cell with an EMF of 0.40 V has the cell reaction

$$2H^{+}(aq) + 2X^{2+}(aq) \Leftrightarrow 2X^{3+}(aq) + H_{2}(g)$$

where X is a metal.

If the concentrations of the ions were 1.00 mol L^{-1} and the pressure of H_2 was 101.3 kPa, then the Reduction Potential (E°) for the half reaction

$$X^{3+}(aq) + e^- \rightarrow X^{2+}(aq)$$
 would be


- (A.) 0.40 V
- B. 0.80 V
- C. +0.40V
- D. +0.80 V
- 8. During the electrolysis of molten sodium bromide which one of the following equations best represents the reaction at the negative electrode?
 - A. Na \rightarrow Na⁺ + e⁻
 - (B.) Na⁺ + e⁻ \rightarrow Na
 - C. $2 Br \rightarrow Br_2 + 2 e^{-}$
 - D. $Br_2 + 2e^- \rightarrow 2Br^-$

9. For the reaction

 $H_2SO_3 + H_2O_2 \Leftrightarrow H_2SO_4 + H_2O_2$ the true statement is:

- * A. hydrogen peroxide is acting an an oxidant and as a reductant
- * B. hydrogen peroxide is acting as a reductant
- C. the oxidation number of sulfur has decreased
- D. the oxidation number of oxygen has decreased
- 10. The diagram below represents a Daniell Cell, a battery from the mid 1800s.

When the zinc rod and the copper container are connected as part of a completed electrical circuit, a current flows in this circuit. When the cell is operating, which one of the following statements is true?

- A. The copper container gradually dissolves.
- B. Electrons flows from the copper to the zinc through the external circuit.
- C. Zinc is deposited around the zinc rod.
- D. Sulfate ions migrate through the porous pot from the copper compartment to the zinc compartment.

33 marks

- 11. Write fully balanced, ionic equations (where possible) for any reactions that occur in the following procedures. If no reaction occurs, write 'no reaction'.
- (a) Excess acidified potassium dichromate is added to propan-1-ol

Reduction half equation:

(Cr2072-+14H++62->2Cr3++7H20)×2

Oxidation half equation:

(CH2 CH2 CH2 OH + H20 -> CH2 CH2 COOH + 4H+++++ -) × 3 3 CH3 CH2 CH2 OH + 340 + 2 CM2 O 2 + 88H+ 120 -> 3 CM2 CM2 CM2 CM2 + 12H++ 12e - 4 CM2 + 16 Overall Equation:

3 chy chy chy 0H + 2cr, 02 + 16H+ -> 3 chy chy cooH + 4cr3+ + 11 H20 //

Observation: Orange to desp green.

(5 marks)

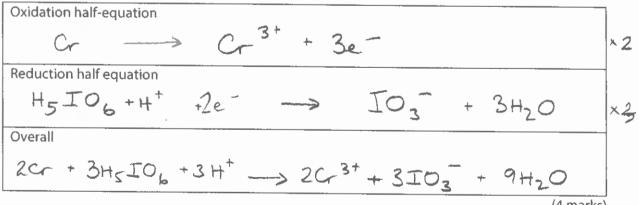
(b) Bromine water is added to potassium iodide solution.

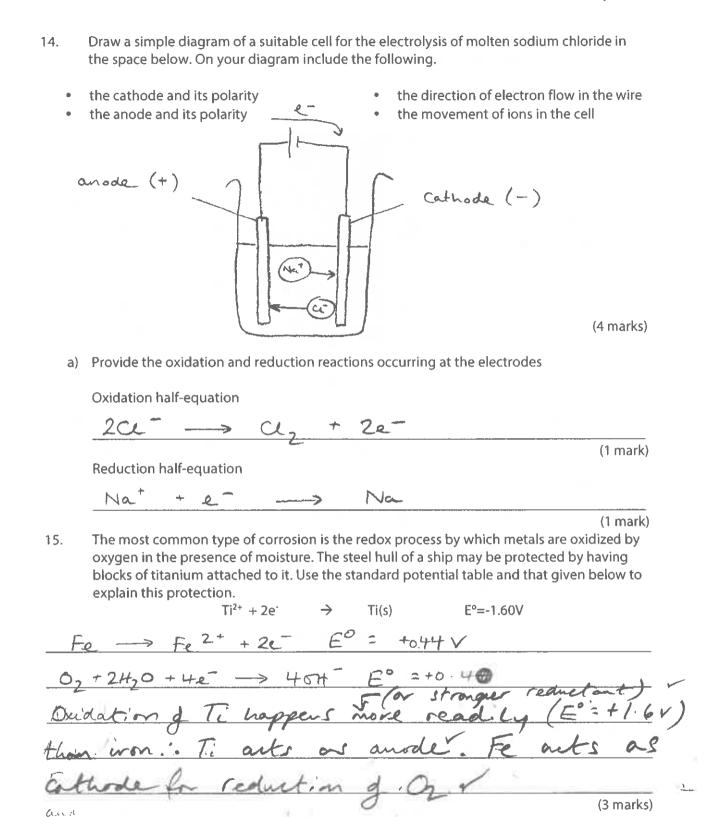
Equation: $Br_3 + 2I^- \rightarrow 2Br^- + I_2 \vee V$

Observation: Orange to brown

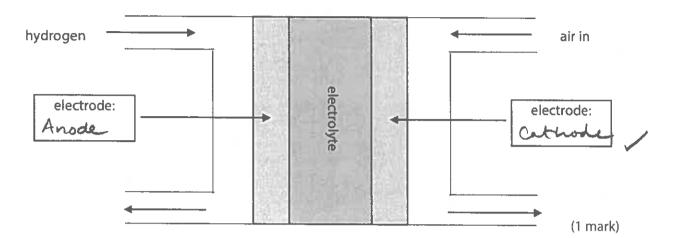
(3 marks)

12. Consider the reactions below and complete the table accordingly:


Reaction 1
$$+5$$
 -4 $+6$ $+6$ $2 \text{ NaC} \ell O_3 + SO_2 + H_2 SO_4 $\rightarrow 2 \text{ C} \ell O_2 + 2 \text{ NaHSO}_4$
Reaction 2 $\ell + 5 + 5 + 5 + 6$ $\ell + 6$$


	Redox reaction? (circle correct answer)	Explanation using oxidation number
Reaction 1	Yes No	Oxidation Number of Cl in NaclO3 from +5 to +4 reduced Oxidation Number of S in SO2 to Natt SOx from +4 to +6 so oxidised
Reaction 2	Yes / No	O.N IZ from O to +5 · oxionised. ON &N from +5 to +4 · reduced.

- When chromium is added to periodic acid, H_5IO_{6} , the iodate ion, IO_3 , is formed and the 13. resulting solution turns deep green.
 - a) Determine the oxidation number of the iodine in:


$$H_5IO_6$$
: +7 and IO_3 : +5

Using this information construct suitable fully balanced, half and overall equations.

- 16. The hydrogen fuel cell is shown in diagrammatic form below. The electrolyte used in this cell has a pH less than 7 and the external circuit is not shown.
 - a) Label the anode and cathode in the correct box.

b) Complete the equations for:

the anode:

$$\frac{H_2}{H_2} \longrightarrow 2H^+ + 2e^- \qquad \qquad \left(\begin{array}{c} E^\circ = 0 \end{array} \right)$$
the cathode:

the cathode:

c) What would the cell voltage generated by this cell be assuming standard conditions?

+ 1.23 V

(1 mark)

END OF TEST